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Abstract
1.	 Organisms are constantly making tradeoffs. These tradeoffs may be behavioural 

(e.g. whether to focus on foraging or predator avoidance) or physiological (e.g. 
whether to allocate energy to reproduction or growth). Similarly, wildlife and fish-
ery managers must make tradeoffs while striving for conservation or economic 
goals (e.g. costs vs. rewards). Stochastic dynamic programming (SDP) provides a 
powerful and flexible framework within which to explore these tradeoffs. A rich 
body of mathematical results on SDP exist but have received little attention in 
ecology and evolution.

2.	 Using directed graphs – an intuitive visual model representation – we reformu-
lated SDP models into matrix form. We synthesized relevant existing theoreti-
cal results which we then applied to two canonical SDP models in ecology and 
evolution. We applied these matrix methods to a simple illustrative patch choice 
example and an existing SDP model of parasitoid wasp behaviour.

3.	 The proposed analytical matrix methods provide the same results as standard 
numerical methods as well as additional insights into the nature and quantity of 
other, nearly optimal, strategies, which we may also expect to observe in nature. 
The mathematical results highlighted in this work also explain qualitative aspects 
of model convergence. An added benefit of the proposed matrix notation is the re-
sulting ease of implementation of Markov chain analysis (an exact solution for the 
realized states of an individual) rather than Monte Carlo simulations (the standard, 
approximate method). It also provides an independent validation method for other 
numerical methods, even in applications focused on short‐term, non‐stationary 
dynamics.

4.	 These methods are useful for obtaining, interpreting, and further analysing model 
convergence to the optimal time‐independent (i.e. stationary) decisions predicted 
by an SDP model. SDP is a powerful tool both for theoretical and applied ecology, 
and an understanding of the mathematical structure underlying SDP models can 
increase our ability to apply and interpret these models.
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1  | INTRODUC TION

Tradeoffs are an unavoidable part of being alive. Tradeoffs may be 
physiological (e.g. how much energy to allocate to growth vs. repro-
duction; Rees, Sheppard, Briese, & Mangel, 1999), or behavioural 
(e.g. how to balance energy gain with predator avoidance; Mangel 
& Clark, 1986; McNamara & Houston, 1986). What constitutes a 
successful strategy is ultimately influenced by natural selection, as 
strategies that increase population mean fitness will tend to spread 
in the population if they have a heritable component.

Similarly, conservation ecologists and wildlife or fisheries manag-
ers must also make tradeoffs while striving to achieve conservation 
or management goals. In this context, tradeoffs are often between 
immediate and future rewards (e.g. how much to harvest now 
while maintaining a sufficient population to harvest later; Runge & 
Johnson, 2002). The objective may be to control an invasive spe-
cies (Bogich & Shea, 2008) or ensure the long‐term viability of a 
population.

Optimal control theory predicts how an individual should navi-
gate a series of risks and rewards to achieve an objective, subject to 
relevant constraints. Often, the rewards may be probabilistic (e.g. 
the probability of individual finding food), and the optimal control 
may depend on both the state of the individual (e.g. an animal's phys-
iological state) and a temporal component (e.g. how many days re-
main in a season). We use the word decision (rather than control) to 
describe the action taken by an individual whenever there is more 
than one possible action. These decisions include events beyond 
cognition such as the decision by an animal to abort a pregnancy 
based on their level of energy reserves. An optimal decision question 
may be framed as a state‐dependent Markov decision process.

Stochastic dynamic programming (SDP) is a common method to 
deal with state‐dependent Markov decision processes. It is com-
mon in both ecology and resource management to refer to both the 
model and the method of solving the model as SDP (Marescot et al., 
2013) and we follow this convention. SDP has a rich history of ap-
plication and theoretical developments in a wide array of disciplines 
(Puterman, 1994), including engineering (Sheshkin, 2010), finance 
(Bäuerle & Rieder, 2011) and artificial intelligence (Sigaud & Buffet, 
2010). However, many of these theoretical advances have not been 
popularized in the biological literature, despite their powerful impli-
cations both for model analysis and biological interpretation.

Stochastic dynamic programming has been used in many areas 
of biology, including behavioural biology, evolutionary biology 
and conservation and resource management (for reviews in each 
of these areas, see McNamara, Houston, and Collins (2001) and 
Mangel (2015), Parker and Smith (1990), and Marescot et al. (2013), 
respectively).

In some applications of SDP, one is interested in the temporal 
aspects of the optimal decisions, especially near some terminal time; 
these are finite time horizon problems. For example, we may expect 
an individual to make riskier foraging decisions near the end of a 
feeding season (Bull, Metcalfe, & Mangel, 1996; Reimer, Mangel, 
Derocher, & Lewis, 2019a). In many cases, the optimal decisions are 

stationary (i.e. not varying from one time step to the next) when 
they are sufficiently far away from the terminal time. In some ap-
plications of SDP, these stationary decisions are used for prediction 
(Chan & Godfray, 1993; Mangel, 1989; Shea & Possingham, 2000), 
rather than the transient dynamics near the end of the optimiza-
tion period; we refer to these as stationary decision problems. Finally, 
other questions do not concern a finite time period at all (Mangel & 
Bonsall, 2008; Venner et al., 2006), but are infinite horizon problems. 
For example, managers may wish to maximize the total number of 
animals that may be harvested indefinitely (Runge & Johnson, 2002).

Stationary decision problems and infinite horizon problems in bi-
ology are often solved using essentially the same numerical, iterative 
method, though it appears in the literature under different names: 
backwards induction or value iteration (Clark & Mangel, 2000; 
Puterman, 1994). Several software packages have been created to 
run these, and other (e.g. policy iteration) numerical routines for a 
wide range of applications in biology (Chadès, Chapron, Cros, Garcia, 
& Sabbadin, 2014; Lubow, 1995; Marescot et al., 2013).

Stochastic dynamic programming models are typically con-
structed component‐wise, separately considering an individual in 
each possible state at each time. This component‐wise model for-
mulation hides the elegant mathematical structure underlying SDP. 
The theoretical results in the SDP literature outside of ecology 
(Puterman, 1994) depend on this mathematical structure. In this 
paper, we promote the use of vector and matrix notation for SDP ap-
plications, allowing for consideration of an individual in all possible 
states at each time. A few examples of this approach in ecology do 
exist (McNamara, 1990, 1991; McNamara et al., 2001). For example, 
McNamara (1990) analyzed tradeoffs in the context of risk‐sensitive 
foraging by formulating an SDP model in the language of matrices 
and analysing the eigenvalue equation, which led to one of the main 
results we use here – a generalization of the Perron–Frobenius theo-
rem for the SDP operator (McNamara, 1991). We build on this foun-
dation, applying results from general SDP theory to another broad 
class of SDP models in ecology (the so‐called ‘resource allocation 
models’). We demonstrate how formulating an SDP model in the 
language of matrices leads to analytic methods for obtaining opti-
mal decisions for both stationary decision and infinite horizon prob-
lems. We provide step‐by‐step instructions for implementing these 
analytic methods for two canonical equations of SDP in ecology 
(Mangel, 2015) and illustrate key steps with a simple example.

These analytic matrix methods have several notable additional 
benefits. A byproduct of obtaining the optimal decisions in this way 
is a comprehensive picture of all other possible decisions. This pro-
vides a sense of which other, nearly optimal, decisions we could also 
expect to observe in nature, or a range of possible management op-
tions with comparable outcomes. The intuition behind these analytic 
results also allows us to explain non‐intuitive transient oscillating 
decisions. Further, ecologists interested in how an optimally behav-
ing individual's state changes over time typically run thousands of 
Monte Carlo simulations (an approximate method). Alternatively, 
Markov chains provide an exact method for determining the prob-
ability distribution of an individual's realized state at each time 
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(Mangel & Clark, 1988). We illustrate how the Markov transition ma-
trix is conveniently constructed as a by‐product of formulating an 
SDP model using matrices.

We apply these matrix methods to an existing study of host‐
feeding behaviour in parasitic wasps (Chan & Godfray, 1993).

2  | MATERIAL S AND METHODS

2.1 | Stochastic dynamic programming

Stochastic dynamic programming models contain several key com-
ponents (Clark & Mangel, 2000). These include discrete time steps 
t and a time horizon, which may either be finite with a terminal time 
T, or infinite. The set of possible state variables x∈� =

{
x1, … , xk

}
 

must be defined, and any relevant constraints on the states included. 
The actions available to an individual in a given state at each time 
must be made explicit. We assume a finite number of actions avail-
able to an individual. The probabilistic state dynamics (e.g. the prob-
ability of survival or reproduction), which may vary depending on 
the individual's decision, must be defined. The fitness function f(x, t), 
also known as the reward or value function, describes the expected 
future reward for an optimally behaving individual in state x at time 
t. Its value is determined by specifying the dynamic programming 
equation, so that f(x, t)=max� [future reward, given state x at time t], 
where the maximum is taken over all possible decisions and the ex-
pectation is taken over all possible future rewards. For finite horizon 
problems, with T < ∞, a terminal fitness function f(x, T) = Φ(x) must 
be specified. Relevant boundary conditions (i.e critical levels of the 
state variable) must also be specified; for example, if x = 0 implies 
mortality, then f(0, t) = 0 for all t, as there can be no further future 
fitness gains. Note that we used lowercase f to describe the fitness 
function for an individual in a given state. When we later consider 
all states simultaneously, we will use capital F to denote the fitness 
vector. We follow this convention throughout, using lowercase let-
ters to denote scalar quantities and capital letters to denote vectors 
and matrices.

Most applications of SDP in biology find their roots in one of 
two canonical equations (Mangel, 2015). Both have an individual's 
energy stores x as the state variable, μ is the mortality rate (excluding 
starvation), η is the probability of finding food, and y is the energy 
gained if the individual finds food. In the first canonical equation, c is 
the daily energetic cost. This equation describes a model of activity 

choice, with an individual choosing between two possible foraging 
patches, so the decision is i = {patch 1 or 2}:

Here, the probability of survival, the probability of finding food, the 
energetic costs and the energetic gains from finding food all vary de-
pending on patch choice, so are subscripted by i.

The second canonical equation describes a model of resource 
allocation, such as how much energy to devote to reproduction at a 
given time, so the decision is the amount of energy r to allocate to 
immediate reward:

Here the probabilities of survival and finding food do not vary 
with the individual's choice. Rather, the individual must balance 
the immediate rewards g(r) of spending r resources against any 
possible future rewards. In both Equations 1 and 2, survival acts 
as a discount factor on future rewards. Applications in resource 
management also tend to be structured like this second canonical 
equation (Marescot et al., 2013).

2.2 | Illustrative example

We illustrate key concepts using a simple patch choice example. 
Consider an individual in a non‐breeding season of length T who 
may take one of five states x∈� =

{
x1, … , x5

}
 corresponding to their 

level of energy reserves (i.e. x1 < … < x5). Each day, t = 1, 2, …, T − 1, 
the individual chooses one of two foraging patches, with the ob-
jective of maximizing survival to time T. Patch 1 is low risk and low 
reward (η1  =  0.4, e−�1 =0.99) and Patch 2 is high risk and high re-
ward (η2  =  0.8, e−�2 =0.891). Probabilistic state changes may be 
represented by arrows in the directed graph (Figure 1). If an indi-
vidual finds food in either patch, their reserves increase by 2 units 

(1)f(x, t)=max
i=1, 2

e−�i
⏟⏟⏟
survival

⎡
⎢⎢⎢⎢⎣
�if(x−ci+yi,t+1)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

obtain food

+ (1−�i)f(x−ci,t+1)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

donotobtain food

⎤
⎥⎥⎥⎥⎦
.

(2)

f(x, t)

=max
r

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

g(r)
⏟⏟⏟
immediate
rewards

+ e−�

⏟⏟⏟
survival

⎡⎢⎢⎢⎢⎣
�f(x− r+y, t+1)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟

obtain food

+ (1−�)f(x− r, t+1)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

donotobtain food

⎤⎥⎥⎥⎥⎦
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

future rewards

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

F I G U R E  1   State and decision‐dependent transition probabilities for the patch selection example. A living individual may be in 1 of 5 
states (x1, …, x5). State x0 is the absorbing state of dead individuals. Due to space constraints, we have only written transition probabilities 
corresponding to each arrow for an individual in state x4. All arrows in grey are associated with the absorbing state and not included in the 
matrix Pπ (but are included in the Markov matrix P̂𝜋)
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(y1 = y2 = 3; dashed arrows). If an individual does not find food, their 
reserves decrease by 1 unit (c1 = c2 = 1; solid arrows). An individual in 
state x1 who does not find food that day dies (i.e. transitions to state 
x0, the absorbing death state). An individual survives each of these 
transitions with probability e−�in; an individual in any state dies with 
probability 1−e−�in (dotted arrows). These probabilities all depend 
on the patch decision in∈

{
patch1,patch2

}
 made by an individual in 

state xn. We are interested in the stationary decision problem, that 
is, predicting the patch an individual in state x at time t uses, away 
from any transient effects of the terminal time. To answer this ques-
tion, we use an SDP model with the first canonical Equation 1 as the 
fitness function.

2.3 | Existing methods for obtaining 
stationary decisions

Backwards induction is typically used to solve stationary decision 
problems (see Clark & Mangel, 2000 for an overview). This is a 
numerical routine that exploits the recurrence relation between 
f(x, t) and f(x′, t + 1), for each x and some x′ ∊ χ. Backwards induc-
tion starts by defining the terminal fitness function, f(x, T) = Φ(x), 
for all x. One then calculates f(x, T − 1) for all x, using the values 
of f(  ⋅, T). After f (x, T − 1) is calculated, one goes on to calculate 
f (x, T − 2), and continues in this way until f(x, 1) is computed for 
all x. For large T, the optimal decisions are often stationary from 
one time step to the next, depending only on state, for t far from 
T, that is, T – t ≫ 1.

In a similar fashion, one may solve infinite horizon problems 
using the method of value iteration, which is analogous to back-
wards induction applied repeatedly from a zero terminal rewards 
function ϕ(x) = 0 for all x, until some convergence criterion for f(x, t) 
is reached (see Marescot et al., 2013 for an overview). We compare 
results obtained using these numerical methods with the proposed 
matrix methods. All computations were performed in Matlab (The 
MathWorks Inc., Natick, MA, USA) and all code is available at https​://
doi.org/10.5281/zenodo.2547815. For those who prefer working in 
r, we have also included an overview of key r commands (Appendix 
S1, online Supplementary Material).

2.4 | Matrix notation

While applications of SDP in biology typically describe the fitness 
function component‐wise for each state x, such as in Equation 1 
or Equation 2, mathematical results follow more readily if these 
equations are reformulated in matrix notation. A few papers and 
software programs use the language of matrices (e.g. Chadès et al., 
2014; Marescot et al., 2013), but do not discuss the rich theory of 
nonnegative matrices (bolded terms in Glossary, Appendix A) we 
use here.

We let F(t)=
[
f(x1, t), … , f(xk, t)

]⊤ denote a column vector of fit-
ness functions for each state at time t. We do not here explicitly 
consider death, the absorbing state x0 (grey arrows in Figure 1). 
This exclusion of death is necessary for the primitivity of Pπ, a 

condition required for the results described below. Further, each 
matrix Pπ is substochastic due to the discounting effect of survival, 
which ensures convergence in the mathematical results that follow.

We create a square k × k matrix of state transition probabilities 
Pπ, where each entry pπ(xj, xk) describes the probability of transition-
ing from state xj to state xk. A policy π is a i‐tuple of decisions, one 
for each state. Π denotes the set of all possible policies. In Equation 
1, each entry in π may take one of two values, patch 1 or patch 2, 
and so Π contains 2k possible policies (i.e. (number of possible ac-
tions)^(number of states in χ)). Each policy has a corresponding ma-
trix Pπ, so there are 2k possible matrices Pπ.

We rewrite Equation 1 using matrix notation as

where the maximum is taken over each of the independent vector 
components. Letting G𝜋 =

[
g𝜋,1, … , g𝜋,k

]⊤ be a vector of immediate re-
wards, we can similarly rewrite Equation 2 as

2.5 | Matrix notation for illustrative example

For our illustrative patch choice example,

and π = {i1, …,  i5} describes the patch choices for individuals in states x1 
through x5. Intuition may be gained by comparing Pπ with Figure 1, where a 
black arrow from state xj to xk correspond to entry pπ(xj, xk) in Pπ. In our ex-
ample, each patch choice i1, …, i5 is equal to patch 1 or patch 2, giving rise 
to values of μ1 or μ2, and η1 or η2. Thus, there are 25 possible matrices Pπ.

Note that in this example, the locations of the nonzero entries 
in Pπ are the same for all π ∊ Π. In other applications, this need not 
be the case. A nonzero entry of Pπ will change location between 
different policies if the corresponding arrow in the directed graph 
changes the nodes that it connects, rather than just changing the 
probability associated with that arrow (e.g. the parasitoid wasp 
example below).

2.6 | Analytic method for activity choice problems

We now describe a method for obtaining the stationary policy for SDP 
models of form (3) using a generalization of the Perron–Frobenius 
theorem (For the classical Perron–Frobenius theorem in the context of 
matrix population models see Caswell (2001)) by McNamara (1991). 
We highlight relevant mathematical results and include full technical 
details in Appendix S2, online Supplementary Material. Each matrix Pπ 
has k eigenvalues λπ,j, which we order according to their magnitude 

(3)F(t)=max
�∈Π

P�F(t+1),

(4)F(t)=max
�∈Π

[
G� +P�F(t+1)

]

(5)P� =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 e
−�i1 �i1 0 0

e
−�i2 (1−�i2 ) 0 0 e

−�i2 �i2 0

0 e
−�i3 (1−�i3 ) 0 0 e

−�i3 �i3

0 0 e
−�i4 (1−�i4 ) 0 e

−�i4 �i4

0 0 0 e
−�i5 (1−�i5 ) e

−�i5 �i5

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

https://doi.org/10.5281/zenodo.2547815
https://doi.org/10.5281/zenodo.2547815
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with subscripts j = 1, …, k so that |λπ,1| ≥ ⋯ ≥  |λπ,k|. Each eigenvalue 
λπ,j has a corresponding right eigenvector Vπ,j. The optimal policy π* is 
defined as the policy satisfying.

for V* satisfying PπV* = λ*V*. If P�∗ is primitive (see Appendix S3, online 
Supplementary Material for details), the generalized Perron–Frobenius 
states that P�∗ has a uniquely defined dominant eigenvalue ��∗ ,1 and 
corresponding right eigenvector V�∗ ,1, which determine the asymptotic 
behaviour of F(t) according to

that is, F(t) decays exponentially according to (��∗ ,1)
−t and converges 

in structure to V�∗ ,1 as t  →  −∞. This dominant eigenvalue satisfies 
��∗ ,1=max� ��,1 (McNamara, 1991). If we are interested in obtaining 
the stationary policy analytically, without using backward induction or 
value iteration, we may thus follow the steps in Box 1.

Note that primitivity is a sufficient but not necessary condi-
tion for π* to be the optimal stationary strategy. The assumption 
of primitivity can usually be satisfied by omitting any absorbing, or 
otherwise redundant, states (McNamara et al., 2001). If there truly 
are multiple optimal strategies (i.e. step 3 in Box 1 does not have a 
unique answer), this method will identify all of them.

What is more likely than multiple truly optimal policies is that 
there are several policies which are nearly optimal, with corre-
sponding dominant eigenvalues just slightly smaller than ��∗ ,1 
(Mangel, 1991). This is one of the strengths of this type of ap-
proach; by calculating the asymptotic properties of the SDP model 
explicitly for each possible policy, we not only find the optimal 
policy, but also obtain information about which other policies are 
nearly optimal.

We applied the steps in Box 1 to the illustrative patch choice 
example to obtain the stationary decisions. We also found policies 
which are nearly optimal by looking at which matrices Pπ have domi-
nant eigenvalues within 1% of ��∗ ,1. The properties of P�∗ are not only 
relevant as t  →  ∞, but also for understanding transient behaviour 
during convergence. For an example illustrating how the other ei-
genvalues of P�∗ may lead to surprising oscillations, see Appendix S4, 
online Supplementary Material.

2.7 | Analytic method for resource 
allocation problems

Using results from general SDP theory (Appendix S2, online 
Supplementary Material), we know that an optimal stationary policy 
π* exists for equations of form (4) and that for any policy π there ex-
ists a unique solution F̃ satisfying F̃𝜋 =G𝜋 +P𝜋 F̃𝜋. This solution has the 
form F̃𝜋 = (I−P𝜋 )

−1G𝜋, which can be seen using the recursive nature 
of this equation. For a given stationary policy π,

If we increase T, the number of time steps under consideration in-
creases. Alternatively, we may fix T and look increasingly far back in 
time (i.e. letting τ → ∞). Mathematically, these are equivalent; we are 
making the time period under consideration very large, whether by 
changing the initial time or the terminal time. As τ → ∞, Part B → 0, 
since |λπ,1| < 1 for substochastic matrices such as these (Appendix 
S2, online Supplementary Material). Part A is a matrix geometric se-
ries with |λπ,1| < 1, so

as τ → ∞, where I is the k × k identity matrix. The solution corre-
sponding to π* is the largest of the solutions corresponding to all 
π ∊ Π, that is,

Thus, for SDP problems following the second canonical equa-
tion, the steps in Box 2 determine the optimal stationary policy.

2.8 | Host feeding behaviour of parasitic wasps

The evolution of insect parasitoid behaviour has been an especially 
fruitful area of SDP research (Charnov & Skinner, 1984; Clark & 

P�∗V∗ =max
�

P�V
∗,

lim
t→−∞

(��∗ , 1)
−tF(t)∝V�∗ , 1,

F(T−1)=G� +P�F(T)

F(T−2)=G� +P�
[
G� +P�F(T)

]

=G� +P�G� +P�P�F(T)

⋮

F(T−�)=

�−1∑
q=0

(P� )
qG�

⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟
A

+ (P� )
�F(T)

⏟⏞⏟⏞⏟
B

.

(6)
�−1∑
q=0

(P� )
qG� → (I−P� )

−1G�

F̃𝜋∗ =max
𝜋∈Π

F̃𝜋 .

BOX 1 Stationary policy for activity choice problems

1.	Determine the set of all possible policies π ∊  Π and con-
struct the corresponding matrices Pπ

2.	Calculate the dominant eigenvalue λπ,1 of each matrix Pπ

3.	Find the largest of these dominant eigenvalues: 
��∗ ,1=max�∈Π ��,1

4.	Confirm that the corresponding matrix P�∗ is primitive, and 
if so, π* is the stationary policy

BOX 2 Stationary policy for resource allocation 
problems

1.	Determine the set of all possible policies π ∊  Π and con-
struct the corresponding Pπ and Gπ

2.	Calculate F̃𝜋 = (I−P𝜋 )
−1G𝜋 for each policy

3.	Determine which policy π* yields the largest F̃𝜋; π* is the 
optimal stationary policy
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Mangel, 2000; Mangel, 1989). We apply our method to Chan and 
Godfray's (1993) resource pool model of host feeding behaviour 
in parasitoid wasps, where an adult female wasp requires host re-
sources both for maintenance as well as the maturation of eggs. 
Upon encountering a host, she must choose whether to use it for 
host feeding or for oviposition. If she uses the host for food, she 
forgoes immediate fitness rewards but gains energy with which she 
may obtain future rewards. Chan and Godfray's goal was to pre-
dict the optimal state‐dependent feeding strategy of such parasitic 
wasps, specifically the stationary energetic threshold xc below which 
an adult female wasp is predicted to host feed rather than oviposit, 
provided she was neither close to some terminal time nor running 
out of eggs.

Chan and Godfray described an individual's physiological state 
with a single variable x. Time was scaled so that each time step corre-
sponds to the amount of time it takes to lose one unit of energy; for 
example, if an individual's state is x = 10, that individual can survive 
10 time steps without feeding before death by starvation occurs.

The probability of finding a host over one time step is η. If a host 
is not encountered, the wasp's state decreases by 1 for daily mainte-
nance. If a host is encountered and the wasp decides to host feed, 
her state decreases by 1 for daily maintenance but increases by α, the 
energy gained from host feeding. If instead she parasitizes the host, 
her state decreases by 1 for daily maintenance and then further de-
creases by β, the cost of egg maturation. However, she receives an 
immediate fitness gain of 1 unit. Her daily survival probability is e−μ, 
where μ is the instantaneous risk of mortality. If x = 0, the wasp dies 
of starvation. Chan and Godfray used parameters η = 0.2, α = 30, and 
μ = 0.0125. They considered two values for the cost of egg maturation, 
β = 4 and 16, but we consider only β = 4. The largest possible x value 
and the terminal time T were chosen to be large enough that they did 
not affect the threshold value between host feeding and parasitizing. 
As they did not state these values explicitly, we used 75 as an upper 
bound for x and T = 1,000.

The resulting SDP equation is

with boundary conditions f(x, T) = 0 and f(0, t) = 0 for all x and t. We 
rewrite Equation 7 as

where i  =  1 denotes parasitizing and i  =  2 denotes host feeding, 
g1 = 1, g2 = 0, c1 = −β, and c2 = α. This now resembles the second 
canonical Equation 2 and can thus be written as Equation 4, where 

each π ∊ Π is a k‐tuple of ones and twos. Each π has a corresponding 
Pπ and Gπ (for more details, see Appendix S5, online Supplementary 
Material). For each π ∊  Π, we calculated F̃𝜋 = (I−P𝜋 )

−1G𝜋 and then 
determined which was largest. The corresponding policy π* is the 
optimal stationary policy.

2.9 | A computational note

The number of policies π which need to be explored grows expo-
nentially as the number of states k increases. In both of our ex-
amples, ∏ contained 2k possible policies (=  (number of possible 
actions)^(number of states in χ)). It quickly becomes computationally 
unwieldy to explore each of these options. Fortunately, this is not 
necessary because the decision made in each state is independent of 
the optimal decision of any other state; observe that f (x, t) does not 
depend on f(x′, t) for any other state x'. For example, in the parasitic 
wasp problem, we first considered π = {1, 1, …, 1}. We then checked 
whether F̃𝜋 increased if π = {2, 1, …, 1}. If so, we left 2 in that location, 
if not, we returned it to 1. We then checked whether F̃𝜋 was greater 
when the second entry of π was 2, again retaining 2 in that location if 
so, and discarding it if not. Continuing in this way reduced the num-
ber of policies considered from 2k to k + 1.

2.10 | Forward iteration using Markov chains

Monte Carlo simulations are often used to study the realized 
states of an optimally behaving individual over time (see Clark & 
Mangel, 2000 for details). Many such simulations are required to 
get an approximation of the probability distribution of the individ-
ual's state over time. One way to obtain the exact solution, rather 
than these approximations, is through the use of Markov chains 
(Mangel & Clark, 1988). Component wise formulation of SDP mod-
els, however, means that this approach is often not considered. 
We suspect this is because it appears far removed from the para-
digm of component wise backwards induction already in use, and 
may seem less intuitive than Monte Carlo simulations. However, 
it may be simpler to obtain exact Markov chain results than the 
approximate Monte Carlo results, provided the problem is already 
formulated using matrices.

To see this, let M denote a Markov matrix, where 
m(xk, xj) = Pr(transitioning from state xj to state xk in one time step). 
Recall that pπ(xj, xk) = Pr(transitioning from state xj to state xk in one time 
step) under policy π and that Pπ is a substochastic matrix. This can eas-
ily be modified to be a true stochastic matrix P̂𝜋, with rows summing to 
1, by adding the appropriate column and row for any absorbing states 
such as death (grey arrows in Figure 1). The Markov matrix correspond-
ing to the SDP model for a given policy π is then M= P̂⊤

𝜋
, the transpose 

of matrix P̂𝜋. Let z(x, t) = Pr(an optimally behaving individual is in state 
x at time t), with vector notation Z(t). We obtain the probability of the 
individual being in each state using the forward recursion equation

(7)
f(x, t)=max

encounterhost

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

⎧⎪⎪⎨⎪⎪⎩

�
�
1+e−�f(x−1−� ,t+1)

�
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

parasitize

, e−�f(x−1+�,t+1)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

host feed

⎫⎪⎪⎬⎪⎪⎭
+ (1−�)e−�f(x−1,t+1)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

nohostencountered

,

(8)
f(x, t)= max

i∈{1,2}
�[gi+e−�f(x−1+ci,t+1)]

+ (1−�)e−�f(x−1,t+1),

(9)Z(t+1)=M(t)Z(t)= (P̂𝜋(t))
⊤Z(t), Z(0)= z0,
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where z0 is a probability mass function for the individual's initial state.
We calculated the probability that an individual is in state x at 

time t for the parasitic wasp example using this method of Markov 
chains. We assumed z0 ∼ Poisson(40), and considered t = 1, …, 15.

3  | RESULTS

3.1 | Illustrative example

In the patch choice example, an individual in each of the 5 states 
has the same 2 available patch choices, so there are 25 = 32 pos-
sible policies, π1, …, π32 (Table 1). Each of these policies corresponds 
to a matrix Pπ, which takes the form of Equation 5. We calculated 
the dominant eigenvalue of each of these 32 matrices (Table 1) and 
found the largest of these dominant eigenvalues was ��∗ ,1=0.97, 
corresponding to policy π* = {patch 2, patch 2, patch 1, patch 1, patch 
1}. The corresponding matrix is

By checking sequentially whether (P�∗ )� is positive for ξ = 1, 2, …, we 
found that (P�∗ )6 is positive, so P�∗ is primitive. Thus the conditions of 
the generalized Perron‐Frobenius theorem are satisfied and we know 
that the rewards vector F(t) will asymptotically decay exponentially ac-
cording to �t

�∗ ,1
, its structure will tend towards that of the corresponding 

right eigenvector V�∗ ,1, and policy π* is the stationary policy. We con-
firmed this using the typical method of backwards induction (Figure 2).

We determined which of the dominant eigenvalues λπ,1 of Pπ for 
each policy π (Table 1), were within 1% of ��∗ ,1 and found five such 
policies: {1,2,1,1,1}, {1,2,2,1,1}, {2,1,1,1,1}, {2,1,2,1,1}, and {2,2,2,1,1}, 
where 1's and 2's denote patches 1 and 2, respectively.

3.2 | Host feeding behaviour of parasitic wasps

Using the method outlined in Box 2, the optimal stationary policy π* 
is to host feed if x ≤ xc = 27, the stationary threshold, and to parasitize 

otherwise. This stationary policy was the same as that found using 
backwards induction (Figure 3).

We performed Monte Carlo simulations (Figure 4a), against 
which we compared the exact solutions obtained with the method 

(10)P�∗ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0.71 0 0

0.18 0 0 0.71 0

0.71 0.59 0.71 0.71 0.40

0.71 0.71 0.59 0.71 0.40

0 0 0 0.59 0.40

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

 

Policies ∏

π1 π2 π3 π4 π5 ⋯ π* ⋯ π32

Patch choice

i1 1 1 1 1 1   2   2

i2 1 1 1 1 1   2   2

i3 1 1 1 1 2 ⋯ 1 ⋯ 2

i4 1 1 2 2 1   1   2

i5 1 2 1 2 1   1   2

λπ,1 0.94 0.90 0.94 0.89 0.96 ⋯ 0.97 ⋯ 0.89

TA B L E  1   All possible policies π (i.e. the 
patch choice between patch 1 and 2 for 
an individual in each of the five possible 
states) and the dominant eigenvalue λπ,1 
of each policy's associated matrix Pπ. The 
stationary policy π* is the one with the 
largest dominant eigenvalue, in grey

F I G U R E  2   Solution (obtained using backwards induction; 
arrow at top) of the illustrative patch choice stochastic dynamic 
programming example. Top: Asymptotic exponential decay of 
the fitness vector F(t) backwards in time, as t becomes further 
away from the terminal time. The bottom curve is f(x1, t) and 
the top curve is f(x5, t), with the fitness curves for states x2 to 
x4 in between. Middle: Normalized solution of F(t) converging 
backwards in time to the right eigenvector V�∗ ,1 (grey dashed lines) 
corresponding to the stationary policy π*. Bottom: Convergence 
backwards in time to the stationary policy, π* = {patch 2, patch 2, 
patch 1, patch 1, patch 1}

5 10 15

Time

0.4

0.6

0.8

1.0

F(
t)

5 10 15
Time

0.1

0.15

0.2

0.25
N

or
m

al
iz

ed
 F

(t)

5 10 15
Time

x1

x2

x3

x4

x5

S
ta

te

Patch 2

Patch 1

Direction of backwards induction



     |  1959Methods in Ecology and Evolu
onREIMER et al.

of Markov chains (Figure 4b). We also calculated the probability that 
the individual is in each state, conditional on the individual surviving 
to that time (Figure 4c).

4  | DISCUSSION

Formulating an SDP problem using matrices allowed us to analyti-
cally determine optimal stationary policies and interpret the nature 
of convergence to these stationary policies. One of the most no-
table benefits of applying matrix tools to SDP analysis is a better 
understanding of the relative performance of other stationary poli-
cies. Numerical methods result in a single, optimal stationary policy. 
However, there may be several stationary policies which perform 
nearly as well so as to be indistinguishable in light of the uncertainty 
in parameter estimates and model structure (Mangel, 1991). Gaining 
a better picture of all policies with comparable fitness values can 
provide a range of good options for managers, or help interpret field 
observations. For example, two distinct colour morphs of the desert 
flower Linanthus parryae coexist in many areas (Epling & Dobzhansky, 
1942; Wright, 1943), and multiple life history strategies – annual, 
biennial, and iteroparous – also coexist within a single population 
of Streptanthus tortuosus, a Californian wildflower (Gremer et al., in 
review). Stable coexistence suggests similar lifetime fitness between 
distinct strategies.

The matrix of state transition probabilities Pπ is useful not only 
for finding stationary decisions but also for studying the evolution 
of an optimally behaving individual's state over time using Markov 
chains as the Markov transition matrix M(t) is constructed as a by‐
product of constructing Pπ.

In stationary decision and infinite horizon problems, numerical 
iterative methods require the user to specify a suitable stopping 
time criterion. This may be the number of time steps over which 
the optimal policy does not change or a requirement that the max 
norm, || ⋅ ||∞ (or, alternatively, the span seminorm (Puterman, 1994)) 
between successive iterations of the fitness function be very small 
(Marescot et al., 2013). For example, if we set a stopping criterion 

for backwards induction of ||F(:, T − (t + 1)) − F(:, T − t)||∞ < ϵ = 0.001, 
in the model for the parasitic wasp, we would stop at time T − 391. 
However, we can see in Figure 3, that this terminates the iterative 
method before the stationary policy is achieved. If, instead, we used 
the stopping criterion of Boutilier, Dearden, and Goldszmidt (2000), 
which requires ||F(:, T − (t + 1)) − F(:, T − t)||∞ < ϵ(1 − e−μ)/(2e−μ), where 
e−μ is the discount factor in this example, then we would stop at 
time T − 791, by which time the stationary policy has been reached. 
Analytic computation using matrix analytic methods can confirm 
that convergence to the true optimal solution has been reached by 
the stopping time.

For applications with a level of complexity similar to those dis-
cussed here, computational constraints will likely be minor. For 
example, all of the code required in our examples using any of the 
methods considered (i.e. backwards induction or matrix methods) 
ran in less than 20 s on a modern laptop PC (Intel(R) Core(TM) i7 
CPU, 32 GB of RAM, and a 64‐bit operating system). We suspect 
that the numerical iterative methods will tend to find solutions faster 
than the matrix analytic methods in most cases, though we have not 
given this a thorough treatment here. For both matrix and numeri-
cal methods, computational complexity increases exponentially with 
the addition of more state variables (e.g. simultaneous consideration 

F I G U R E  3   Optimal decisions of the parasitic wasp model of 
Chan and Godfrey (1993), obtained using backwards induction. The 
policy at time t = 1 is the stationary policy, which is the same as 
that obtained using our proposed matrix method
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F I G U R E  4   Changes in an optimally behaving individual's state 
in the parasitic wasp example. (a) 20 Monte Carlo simulations. If we 
continued to run more of these, and calculated the proportion of 
simulations in each state at a given time, we would end up with (b). 
(b) Heat map of the probability of being in a given state at a given 
time, obtained using Markov chains. (c) Heat map of the probability 
of being in a given state at a given time, conditional on surviving to 
that time, obtained using Markov chains

5 10 15
0

20

40

60

S
ta

te

0.03

0.08

0.13

5 10 15
Time

20

40

60

S
ta

te

0.01

0.03

0.05

5 10 15
0

20

40

60

S
ta

te



1960  |    Methods in Ecology and Evolu
on REIMER et al.

of an individual's age, reproductive state, energetic state, etc.), lead-
ing to the ‘curse of dimensionality’ (Bellman, 1957). If multiple state 
variables must be considered, other methods may become more 
appropriate, requiring approximate dynamic programming meth-
ods (Powell, 2007) such as reinforcement learning (Frankenhuis, 
Panchanathan, & Barto, 2018), or more heuristic methods (Nicol & 
Chadès, 2011).

There are similarities between the mathematical SDP results 
described here and other areas of ecological theory. For example, 
analytical eigenvalue equations have been used to study the evo-
lution of optimal life history strategies (Bulmer, 1994; Charnov & 
Schaffer, 1973). Selection on life history strategies has also been 
considered in the context of matrix population models, where sen-
sitivity analysis on expected lifetime reproduction (R0) indicates 
the strength of selection acting on a given life history parameter 
(see Caswell, 2001 for an overview). Theoretical results on Markov 
chains with rewards initially developed in the context of stochastic 
dynamic programming (Howard, 1960) have recently been applied 
to studies in demography (Caswell, 2011; Van Daalen & Caswell, 
2017).

We do not propose that these matrix methods replace back-
wards induction or value iteration, but rather that they are additional 
tools. The two approaches are complementary, and, ideally, will be 
used in concert. Even if one is interested in transient dynamics near 
the terminal time, running that same model until it reaches its sta-
tionary decision state and then confirming that it has reached the 
correct state with our proposed matrix methods would be an excel-
lent check for errors in the numerical code.

The examples we have considered here were chosen for their 
simplicity and general applicability. One of the benefits of SDP, how-
ever, is model flexibility. For example, some SDP applications include 
variable time increments; e.g. f(x, t) is a function of both f(x, t + τ) and 
f(x,  t  +  1) for some integer τ (Mangel, 1987). Others require more 
than one state variable (Brodin, Nilsson, & Nord, 2017), which would 
need to be dealt with using either tensors or matrices incorporating 
multiple states. These modifications will need to be dealt with on a 
case‐by‐case basis, building from the foundations of the two canon-
ical equations.

5  | CONCLUSION

We have illustrated an alternative formulation of SDP models in 
biology, using the language of matrices, as well as highlighted use-
ful applications of relevant mathematical results. For two canonical 
equations of SDP in ecology, we used these mathematical results to 
analytically obtain the optimal stationary decisions. This resulted in 
additional insights into the existence and nature of alternate, nearly 
optimal policies, as well as novel insight into the nature of conver-
gence. The transition matrices required for this method also allowed 
for straightforward implementation of Markov chains to study the 
probability distribution of an individual's state. We hope this will 
encourage the incorporation of further results from SDP theory 

outside ecology and expand the standard toolkit used to analyse 
SDP models in ecology, evolutionary biology, conservation and re-
source management.
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APPENDIX A
Glossary of matrix terminology
For a square matrix P, of size k × k, we remind the reader of the fol-
lowing definitions:

•	 dominant eigenvalue of P: the largest (in magnitude) of all eigen-
values of P

•	 eigenvector of P: a vector of length k which, when multiplied by P, 
changes only by multiplication with a scalar, i.e. PV = λV, where λ is 
the associated eigenvalue

•	 eigenvalue of P: a scalar (real or complex number) λ with the prop-
erty that PV = λV, where V is the eigenvector corresponding to λ

•	 Markov matrix: a non‐negative matrix whose rows (or, equiva-
lently, columns) sum to 1; also known as a stochastic matrix

•	 non‐negative matrix: a matrix where each of the entries is ≥0
•	 positive matrix: a matrix where each of the entries is >0
•	 primitive matrix: a matrix for which Pξ is positive for some integer ξ
•	 substochastic matrix: a non‐negative matrix whose rows sum to 

≤1, with at least one row summing to < (or, equivalently, columns)
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